Package: HMDA 0.1

E. F. Haghish

HMDA: Holistic Multimodel Domain Analysis for Exploratory Machine Learning

Holistic Multimodel Domain Analysis (HMDA) is a robust and transparent framework designed for exploratory machine learning research, aiming to enhance the process of feature assessment and selection. HMDA addresses key limitations of traditional machine learning methods by evaluating the consistency across multiple high-performing models within a fine-tuned modeling grid, thereby improving the interpretability and reliability of feature importance assessments. Specifically, it computes Weighted Mean SHapley Additive exPlanations (WMSHAP), which aggregate feature contributions from multiple models based on weighted performance metrics. HMDA also provides confidence intervals to demonstrate the stability of these feature importance estimates. This framework is particularly beneficial for analyzing complex, multidimensional datasets common in health research, supporting reliable exploration of mental health outcomes such as suicidal ideation, suicide attempts, and other psychological conditions. Additionally, HMDA includes automated procedures for feature selection based on WMSHAP ratios and performs dimension reduction analyses to identify underlying structures among features. For more details see Haghish (2025) <doi:10.13140/RG.2.2.32473.63846>.

Authors:E. F. Haghish [aut, cre, cph]

HMDA_0.1.tar.gz
HMDA_0.1.zip(r-4.5)HMDA_0.1.zip(r-4.4)HMDA_0.1.zip(r-4.3)
HMDA_0.1.tgz(r-4.5-any)HMDA_0.1.tgz(r-4.4-any)HMDA_0.1.tgz(r-4.3-any)
HMDA_0.1.tar.gz(r-4.5-noble)HMDA_0.1.tar.gz(r-4.4-noble)
HMDA_0.1.tgz(r-4.4-emscripten)HMDA_0.1.tgz(r-4.3-emscripten)
HMDA.pdf |HMDA.html
HMDA/json (API)

# Install 'HMDA' in R:
install.packages('HMDA', repos = c('https://haghish.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/haghish/hmda/issues

On CRAN:

Conda:

ensemble-feature-importanceexplainable-aiexplainable-artificial-intelligenceexplainable-machine-learningexplainable-mlexploratory-machine-learningexploratory-modellingfeature-importancefeature-selection-methodsholistic-modelingholistic-multimodel-domain-analysismultimodel-ensemblereproducible-aireproducible-researchrobust-feature-selectionshapley-additive-explanationsshapley-valuestransparent-aiweighted-mean-shapwmshap

3.48 score 1 stars 4 downloads 17 exports 81 dependencies

Last updated 2 days agofrom:8fd04cd15e. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winOKMar 29 2025
R-4.5-macOKMar 29 2025
R-4.5-linuxOKMar 29 2025
R-4.4-winOKMar 29 2025
R-4.4-macOKMar 29 2025
R-4.4-linuxOKMar 29 2025
R-4.3-winOKMar 29 2025
R-4.3-macOKMar 29 2025

Exports:check_efadictionaryhmda.adjust.paramshmda.autoEnsemblehmda.best.modelshmda.domainhmda.efahmda.feature.selectionhmda.gridhmda.grid.analysishmda.inithmda.partitionhmda.search.paramhmda.suggest.paramhmda.wmshaphmda.wmshap.tablesuggest_mtries

Dependencies:autoEnsemblebase64encbitopsbootbslibcachemclicolorspacecrosstalkcurldigestdplyrDTevaluateextrafontextrafontdbfansifarverfastmapfontawesomefsgenericsggplot2glueGPArotationgridExtragtableh2oh2otoolshighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemnormtmunsellnlmepanderpillarpkgconfigplyrpromisespsychR6rappdirsRColorBrewerRcppRCurlrlangrmarkdownRttf2pt1sassscalesshapleysplitToolsstringistringrtibbletidyselecttinytexutf8vctrsviridisLitewafflewithrxfunyaml