Package: autoEnsemble 0.3

autoEnsemble: Automated Stacked Ensemble Classifier for Severe Class Imbalance

An AutoML algorithm is developed to construct homogeneous or heterogeneous stacked ensemble models using specified base-learners. Various criteria are employed to identify optimal models, enhancing diversity among them and resulting in more robust stacked ensembles. The algorithm optimizes the model by incorporating an increasing number of top-performing models to create a diverse combination. Presently, only models from 'h2o.ai' are supported.

Authors:E. F. Haghish [aut, cre, cph]

autoEnsemble_0.3.tar.gz
autoEnsemble_0.3.zip(r-4.5)autoEnsemble_0.3.zip(r-4.4)autoEnsemble_0.3.zip(r-4.3)
autoEnsemble_0.3.tgz(r-4.5-any)autoEnsemble_0.3.tgz(r-4.4-any)autoEnsemble_0.3.tgz(r-4.3-any)
autoEnsemble_0.3.tar.gz(r-4.5-noble)autoEnsemble_0.3.tar.gz(r-4.4-noble)
autoEnsemble_0.3.tgz(r-4.4-emscripten)autoEnsemble_0.3.tgz(r-4.3-emscripten)
autoEnsemble.pdf |autoEnsemble.html
autoEnsemble/json (API)

# Install 'autoEnsemble' in R:
install.packages('autoEnsemble', repos = c('https://haghish.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/haghish/autoensemble/issues

On CRAN:

aialgorithmautomated-machine-learningautomlautoml-algorithmsensembleensemble-learningh2oh2oaimachine-learningmachinelearningmetalearningstack-ensemblestacked-ensemblesstacking

4.02 score 5 stars 21 scripts 313 downloads 5 exports 7 dependencies

Last updated 7 months agofrom:86fadc8b26. Checks:1 OK, 7 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 26 2025
R-4.5-winWARNINGJan 26 2025
R-4.5-macWARNINGJan 26 2025
R-4.5-linuxWARNINGJan 26 2025
R-4.4-winWARNINGJan 26 2025
R-4.4-macWARNINGJan 26 2025
R-4.3-winWARNINGJan 26 2025
R-4.3-macWARNINGJan 26 2025

Exports:autoEnsembleensembleevaluateh2o.get_idsmodelSelection

Dependencies:bitopsbootcurlh2oh2otoolsjsonliteRCurl